
§3 .  Width s

In this section we compute exactly the Kolmogorov and Gel ’ fand

widths and identify optimal subspaces for certain subsecs of L~ [ 0 , 1],

1 < p < °o - The norm of f € L~ is denoted by Hf II and p is used

to denote the conjugate exponent defined by + I -

We begin by recalling the definition of Kolmogorov and Gel ’fand

n-widths.  Let X be a normed linear space , 9.1 a subset of X , and

Xn any n-dimensional linear subspace of X. Then , the n -width of V

relative to X , in the sense of Kolmogorov , is defined to be

d ( 9.1 ;X) inf sup inf ix - y II
TI X x € V y € Xn n

and X is called an optimal subspace for V provided that

d (91;X) = sup inf lix - y ii
X E  9.1 y €  Xn

8(2I ;X ) -n

The n-width of V relative to X , in the sense of Gel fand , is defined as

d~ (V;X) = inf sup Ix H
L x c I l f l Ln n

where L is any subspace of X of codimension n. If

d~ (t1 ;X) sup lix II
X E  *if l  Ln

then L is an optimal subspace for the Gel’fand n-width of V .
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Our sets have the following form . Given functions k 1(x) , - - - ~
k r (X)

det ined and continuous on [0 , 1], and a kernel K(x ,y )  joi ntly continuous

in x,y [0 ,11, we def ine

r 1
~~ ~ r = { ~ a k ( x) f K(x ,y)h(y)dy (a 1,. - - , a )  R r

, it h II < 1) -
j~~1 0 p

The prototype of this class of sets is the choice k (x) xi ’ , 1 1 ,.. - , r

and K(x , y )  (r - 1)!  ~~ - y )~ - In this case ‘~r is simply the ball

(3. 2~ ~r , 
= f f  : f (r l )  ab s. cont.,  (1f (r) lip < ~

In the general case , we will consider ~ç 
~ 

as a subset of L~[ 0 , 1]

for some q, 1 < q < oo, and as such compute its Kolmogorov and Gel’fand

n-width s wh en certain addi tional h ypoth eses are satisfied .

For our purposes , In Section 4 , where we study mixed (L~ , L~ I

approximation to K(x ,y )  by functions of the form (1 .  3) , we will only

need the results of this section when r = 0. However, for the sake of

(3 . 2) we deal here with r >  0 as well and require that the following

properties hold .

I.

X .. . x x . . . x
K ~~‘ ‘ r ’ r-f 1’ ‘ r+m

l , ... , r , 
~~~~~~~~~

k 1(x 1
) . - - k r (X i ) K(X 1~ Y 1 ) K (X 1~ Y m

)

k (x ) - . .  k (x )K( x y ) - - -  K(x y1 r+rn r r+m r+m ’ 1 r+m ’ m

-18-



is non-negative for any points 0 < y < - < y ~ 1, 0 < x < - - < x < 1
1 m I r +m

ari d integer m > 0. Furthermore , we require that for any given y-point

0 < y 1 <~~ •~~ < y < l ( x - P O i f l t , 0 < X i <~~ •~~ < x r +m~~~
l )  the above

determinant is not identically zero for all x-points (y-po ints) .

II. {k . x 
~I l  

Is a Chebyshev system on ( 0 , 1), i. e . ,  for a ny 0 < x1 < ... < X  < 1

~~~~~ •~~~~X~~

K > 0 .

In particular , when r = 0 , Property I implies that K is a nondegenerate

totally positive kernel since Propert y I above implies that the functions

K(xi, y),...,K(Xm ,Y),K(l ,Y) are llnearly independent on [0 ,1]. This

property is more restrictive than the requirement of nondegenerate total

positivity and we could relax the hypotheses I and II somewhat in what

follows. However , for us it is important that these properties hold for

the special case (3. 2) , see [12] , and they shall always be assumed to

hold i n this section.

3. 1. Kolmogorov n-width , p = o0~~ 1 < q  < ~~ -

Our objective is to fi nd

~ ;L~ [ 0 , 1 ] )  lnf sup inf h f  - ~h i -

X f € w  g X  q
n r ,~~ n

The computation of the n-width when q = oo was done in [5 1

and so we here res t rict ourselves to cons idering q < °° .

We int roduce the class

P = {k + Kh~ : t € ~~~ 0 <  p < n , k €

-19-



where 
~~r 1~~~~~~

k rI 
~
11 l ’ ’ ~ m ’ = t h e linear space spanned by

- , f ) .  A typical element of P will be denoted by P or by P~.

Thus if P € P , then P = k + Kh fo r some k € 0 -t n t t r

Theorem 3. 1. Given integers m , r > 0 and a number  q , 1 < q <~~~~, then the re

exists a € A and k E 0r such that P~ = k + Kh~ satisfies

(3.3) hl P * lI < hl p hl
~~, 

q —  q

for every P€ 1’m Moreover , P~ has exactly m + r sim ple zeros in 0 , i~

at 0 < T T < 1 and hence— 1 m+r

* r(3 .4 )  sgn P (x ) = ( - 1 )  h (x)
T

* q - l  r(3.5) sgn(f lP~(x) I h (x)K(x ,y)dx) (-1) h (y)
0 ~ T

and

(3.6) f IP~(x) h~~~h (x)k~(x)dx = 0 , 1 = 1, . . .  , r -

Note that when r = 0 , q = 1, and m = n, this theorem reduces

to Theorem 2.1. The pr oof of the general case follows the proof of

Theorem 2.1 with only slight modifications . The details require the

following generalized versions of Lemma 2. 2.

Lemma 3.1. For given m , r >  0 , P € P has at most m + r zeros in

(0 , 1). If P has exactly m + r zeros at s E A
÷ , then these zeros are

sign changes, the orientation of P is governed~~y the eouation sgn P = ( _ l ) r h 8 ,

and P(1) � 0
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Proof . Let P = k + k € 0r ’ ~ € A - Assu me P has at least r zero s

(otherwise there is nothing to prove) and let s = (s 1, - ..,  S ) ,  0 < 

~l < - - .  < Sr < 1 -

Then it follows that P Jh~, where J(x , y) is the com pound kernel

K ( 1  
: : :

J( x y ) =
K 

s1~~ - - ~
Sr~

1, . . . , i j
Now , the kernel J (x ,y )  = (~ 1) rh~ (x) J (x ,y )  is totally positive , because

Sylvester ’ s determinant identity tells us that if 0 < x1 
< - < x1 ~ 1,

O < y 1 < - - -  < y , :~. 1, then

K 
z 1 , Z

xi, . - , x~ 1, . . .  , r , y1, . - . , y 1
- . — 

K 
s1~ - - - ~

S
r

l , . . . , r

where 0 < z1 < - < z 1 +r < ~ are the pgints of the set {s1,. . - , s , X1, . . . , X~ j

arranged in increasing order. ( Note that ~~~~ 0 , i = 1, . . - , r . )  Now ,

if P also vanishes at 0 < 5r-f l < < 5r+m < 1, (say S~ < S
+i ) ,

then it follow s directly from Lemma 2 . 1 and Property I that

( _ l) i (Th )( x) > 0 for x € (S r+i~ 
S
~+j +l ) , I = 1, - . - , m , (Jh t )( l ) ~ 0 , and

(Th~
)(x) > 0  for x (s~, s1~ 1) , I 0 , 1, . .  .r.  These facts immediately

imply the results of the lemma .

We need another lemma similar to Lemma 3.1 which also reduces

to Lemma 2. 2 in the case r = 0.
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Lemma 3. 2. Given t € A and g(x) € L
30

[0 , 1] such that sgn g = h
~ -

A 5 s u mr  that (g, k1
) = 0, i = I , .  . - , r - Then m > r , and K g has at most

T
m - r  zeros in (0 , 1 ) .  If K g  has m - r  zeros at S E A m r  

then the zeros

T r
~~~~sig n changes and cgn K g = (- 1) h -

Proof. The fact that (g , k .) = 0 , i = 1, . - - , r implie s that g has at least

r sign changes is a well-known result obtained from the Chebyshev

property of {k . (x ) ) ~ . The remaining proof Is quite similar to that of

Lemma 2. 1. Assume (K Tg)(s j ) = 0 , i 1,. - . , m - r. Since

k 1(x) , .. - ~
k r (X)

~ 
K (x , S1) , . .  - , K (X

~ 
Sm r~’ 

K(x , y )  are linearly independent

for y € (0 , 1)\ {s i, •
~~ ~~~~~~~ there exists a non-trivial linear combination

u (x ~ = 

~~ 
a1k 1

(x) ~ 
V b~K(x , s~) + cK(x , y)  such that u (x)h

~
(x ) ~ 0 ,

X €  [0,11 . Since c(KTg)(y) = (u , g) > 0, It follows that (K
Tg)(y) ~ 0

for y e (0 , 1)\ {s 1, . - ‘~~m r ~~ 
It is easily shown , by determining the

sign of c , that sgn(K Tg) = ( _ l ) rh 5 
in (0 , 1).

We are now ready to prove Theorem 3.1.

Proof. The existence of a minimum P~ = k + Kh~~, where ~ = (~~~~, - .  - ,~~~~ ) ,

0 < 

~l < - - - < 1, 0 < p < m , follow s directly . Using the minimality

of ~ we have that

f 1~
*(~)~~~

l sgn P~(x)k1
(X)dX 0, i 1,... ,r

and
1 * q-l  *f iP~,

(x) I sgn P~ (x )K(x ,~~1)dX = 0 , 1 1, . .. , p

0
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Let 0 < 

~
‘
~l 

< - < < 1, 1 > r , be the location of the sign changes of

on (0 , 1) . Then according to Lemma 3.1 , ~ < p r , while

Lemma 3 . 2 i m o l i e s  that i > p  + r. Thus ~ - r +  p and by Lemma 3 . 2 ,

sgn P = (- l )’h - Moreover , i f  p < m then the function P
T

- - ,~~~, l - may be compared to P~ for ~ small  and

positive to show , as in the proof of Theorem 2 .1, tha t  P~ ( l )  = 0. This

conclusion contradicts Lemma 3.1 and hence p m

We now turn to the computation of the Kolmogorov n-width of V

Let r and q be as given , a nd apply Theorem 3. 1 for each n > r

with m = n - r , to obtain point s 0 < 

~l < < 
~n-r  < l~ 0 < T

1 

< - < T~~~ < 1

and a function P
, 

which satisfies ( 3 . 3 )  - ( 3 . 6 ) .  Since plays  a

distinguished role in computing the n-width of W we g i v e  it the

special designation g (x) .  We will also use the notation g (x)n , r , q n

for ~~~~q (X) suppressing its depe ndence on r and q - In ad di t ion ,

we define the n-dimensional  subspace

X° = [k 1, ... , k , K(- ,~~1) , . .. , K( - ,~~~~~ ] -

Theorem 3 . 2 .

( ~~~, n < r
d (1( ; L~ [0 , 11) =

hi n > rn q ’ —

and for n >  r , X~ is an optimal subspace for the n-width of

Proof. Since the subspace Q spanned by k1, ... 
~
k r is contained

~~ ~
‘r , co ’ the n-width of 

~ r , oo ’ when n < r , must be oc . Now ,
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suppose n > r . We will first prove that ~~~ is a lower bound

for the n-width . We proceed as follows : the only n-d imens iona l  sub-

spaces in cont ention for approximating ~( ~ are those which contain

Let Xn be such a subspace and assume for the moment that q > 1.

Let X be spanned by the functions k 1, . - - 
~
k
r~ 

u
1~~ 

. . , u .

n- r~l
For every z (z 1, .. - , z 4 1 ) with ~ z~ 1, we define

t 0
( z)  = 0 , t~(z)  = 

~ 
z~ , I = 1, 2 , . .. , n - r + l and f (y)  f ( y ; z )  - sgn z~ ,

t~~1(z ) < y < t
1

(z) , J = 1, 2 , - . - , n - r + 1. Note that f (y)  =

fo r some s e A k, 0 < k < n - r . Mor eover , f~~ ’’ -z )  = - f ( y ,  z)

for all z and y.  (This particular odd embedding of the surface of the

n - r + 1 sphere Into the Set of extreme points of the unit ball in L

Is used in [10] to simplify the proof of the Hobby-Rice Theorem [ 2 ] J

The function Kf has a unique best approximation in L~ [ 0 , 1]

,~ pm the subspace Xn (because 1 < q < o o )  which we denote by

~ 
a~( z)k ~ + ~~

Thus the mapping (z 1, - - . ~Z
r+i

) — (t 31(z) , .. - ‘~~n-r ~~~ 
is a continuous

n - r -~ 1
odd mapping defined on the n - r 4 1 sphere 5n r  {z : ~ z~~

Hence , by the Borsuk Antipodality Theorem (ci. [31 ), there is a z0 5
f l- r

for which 
~i (z 0 ) = 0 , 1 = 1, 2 , .. - , n - r. Moreover , by th e definition

of g we have
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r
Ih~ Ii < ii Kf - ~. . (z ~k ,n q  z 0 1

~~~
1

1 O iq

< iKf - v i i q

for every function v € X .  Letting q — 1~ we have , fo r all q , 1 < q < ~~

Hg II < sup inf h f  - v i i  -n q  v € X  q
n

Since Xn was chosen arbitrarily we obtain the desired conclusion ,

~~~~~~~~~~~~~ L~[O ,1])

The proof of the upper bound for the n-width  requires

Lemma 3.3. Let 0<~~ < - S -  <
~~~ < 1  O < T 

~~~~~~~ < T  < 1 be the1 n~ r ‘ 1 n
points given by Theorem 3.1 corresponding to g .  Then

K 
T

1 ,T

1, . . - , r ,~~1, ‘~~n — r

The proof of this lemma is similar to the proof of Lemma 2. 3. We

omit the details (~,ee [ 5 ] ,  [6 ]  , and [8]  for related r esul t s ) .  Using this

lemma we define the unique linear Interpolation operator S from C[ 0 , 1]

onto X~ by the condition that

(S f ) (T ~ ) = f (r~) , i = 1, . . .  , n -

We shall show that sup Hf - Sf i i  < ~g hi and since
f € ~ ( q —  n q

r , o°

d ( ~( ; L~ [ 0 , 1]) < sup - Sf ii , this will prove the theorem.
f € ~(r , °°
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To this end , ob serve that if f ‘~r~~ 
has the representation f - k 4 Kh

for some k € 0r and JJ h Ii < 1 then

T
1 ,T ,X

K
1 1, . . .  , r ,~~1, - . - , , y

f( x) - ( S f ) ( x )  f h(y)dy
0 K 1 

1, ... , r ,~~1, - - ‘~~n — r  /

Therefore

T T ,X
K 1 ‘ n

1 1  1 r q

~~~~ i f  - Sf it~ < f ~~ 
‘
~~:‘ 

‘ i’ - , n-r ’ 
dy dx

0 0 
K 

T
1 

~~T
fl

1,... ,r,~ 1,. ‘~ n—r

T ,T ,X
K 1

1 1, . . .  , r ,~~1, - - ‘~~n-r ’~ h~ (y) dy ~~dx
0 0 K 1 

1, ... , r ,~~1, -

and because g = P~ = k + Kh~ for some k E

= hl~ - 5g~~~~~
J
~~~ = h i ~~lI~ -

The last equality follows since g ( T ~~ ) = 0, 1 = 1,... , n , a nd he nce

Sg = 0. Thus the theorem is proven.

We now turn to the computation of the Gel fand n-width of

-26-



3 .2 .  Gel’fand n-width , p - 00 , 1< q < 00 •

The case q = ‘~ was done in [5] . We again assume that q < co

arid define , for n ~ r , the subspace

L° = {f : I E C[ 0,1], f(T
1

) 0, 1 = 1, 2 , . .. , n~ -

L° is a subspace of C [0 , 1] and since Sf = 0 , if f €  L° , the

proof of Theorem 3. 2 implies that

suc ht f hi q~ ii~ n iIq
f€ L° fl~(n r , 00

This inequality does not give an upper bound for the Gel ’fand n-width

of “~r , oo since by definition

( 3 . 7 )  dn (,( 
00 

~~~~ 0 ,1]) inf sup if ii
L f € L f l , (  q

n n r , 00

where the infimum is taken over all subspaces of L~[ 0 , 1] of codimension n.

Clearly , L0 does not fit this requirement . However , let us “ smooth ”

L0 slightly to

L°(€ ) = {f f E L~[ 0,1], f f(x) dx = 0, 1 = 1, 2,. . - , n)

For c > 0, C small , define

1
f(x) - (S f)(x )  f R(x ,y;€ )h(y ) dy

0

where

-27-
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T + E  T +(
1 11 cr 1, . , o , X

f . . .j ’  K d~r1~~
” d’i

T
fl ~~~~~~~~~~~~~~~~~~R(x,y;€ ) =

1 n a- . ,o-

f ...f K ’
T 1,. .. ,r,~ 1,. “‘~ n-r

S f is the unique element in X
0 such that

f (f - S f ) ( x ) d x  = 0 , i = 1, 2 , . . .  , n -

T~

When € = 0, S~ = S and hIS~~f 
- Sf “q ~ 

max 1R (x,y;€ ) - R(x , y :0)  I iih hI 00~x,y
Thus

sup h f  1 1 <  hI~~~hh q + m a x f R ( x , y; € ) - R(x,y;0)i

f € L
0(€ )fl,( 

x,y
n r , 00

The expression max IR(x ,y ; € ) - R(x ,y ;0 )  I goes to zero as € — 0 and

thus hi~~ hi q does provide an upper bound for dTI(~ r 0 0  ;L~ [ 0 , 1]) .

The fact that hi~ U is a lower bound f=~r the Gel’fand n-width is
n q

proven in a fashion similar to the proof of Theorem 3. 2. The argument

goes as follows : if L is a subspace of codimension n of L~ [ 0 , 1]

with sup lh f hi  < 0 0 , then L f l Q  = {O). Thus if
f € L f l~ ’ 

q n r
n r ,°°

L~ {f : f e ~~ 0 ,1], (u~, f) = 0, 1 = 1,. - - ,n)
where u1,... , u~ are linearly independent functions contained in L~~ 0 , 11,

then the matrix ((u 1, k
1

)) has full rank r. We may assume without loss

of generality that det((u 1~k
1

)) 1~~~1~~ - 
* 0. Setting
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K(x ,y )  k
1

(x) 
~ 

k r (X )

(u1,K(. ,y)) (u1,k1) .. - (U
i~
k
r
)

(U
r~

K( •  , y)) (u ,k 1) . . .  (U ,k
(3 . 8) N(x ,y )  - ( u k )  - - - (U 1~

k r
) 

r r

(u , k )  . . .  (u ,k)r 1 r r

then f L~ fl 
~~ ~~ i. e . ,  f = k + Kh € L , for some k € Q , iih 11 00 ~ 1,

if and only if f = Nh and (v i, h)  = 0, i = r + 1,... ,n where v~ = N
T
u
1
.

Now , by the Hobby-Rice Theorem , [2 ] , there is an h , s = (s 1, . - - , s~ ),
0 < k < n - r , such th at (v ,h ) = 0, 1 r + 1, . . .  , n .  Hence f k + Kh € L— — i s  0 S TI

for some k E Q .  Therefore we conclude by th e minimality property of

g that
TI

hi~ Ii < O f ii < sup hi f iin q —  o~~~~~ f L f l,(  q
n r , 00

Since L was an arbitrary subspace of cod.tmension n of ~~ 0,1], we

finally obtain

hh~~~II q dl (~ç 0 0:L~ [0 , l ] )  -

Incidentally , we may in the proof of the lower bound allow L to be

chosen from the larger class of subspaces of codimension n of C[ 0 , 1]

and still obtain the same result . Perhaps , it is best that we extend the

definition of the Gel’fand n-width to make this remark precise.
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For a subset ~7 of a normed linear space (X, ii- Ii ) and a set ~
4 - of linear functionals defined on ~7 we let the Gel’fand n-width of ~7

relative to X and ~ be

nd (c7;X ,~~ ) = inf sup x
L x € L
n n

where L {x : x J , F.x = 0, i = 1,... ,n) and the infimum is taken

*over all F , . . .  F ~~ . If ~ X (norm dual of X) then from our1 ‘ n

previo us definition

TI * TI
d (cZ;X,X ) d (c7;X) -

Thus we may conveniently summarize our previous remarks in

Theorem 3 . 3 .

( n < rn q ri q *d 
~
‘
r 

L [0 ,11) = d 
~~r ,:L [ 0 , l ] , C [0 , 1]) =

~~ q~ 
n~~ r

and fo r n > r , L° is an optimal subspace (of C~ [ 0 , 1]) for the Gel’fand

n-width of V -r , ”
3 .3 .  Kolmogorov n-width , 1 < p  < Q0~ q 1.

The case p = 1 was previously done in [6]. Although p = 00 was done in Sub-

sectio n 3. 1 the following discussion also hold s in this case . Thus we assume

1 < p < ~~ - For this problem we need

Theorem 3.4.  Given any n , r with n > r  ~~~ p , l < z p < 0 0, there

exists an ( A n such that for any t E ‘~n sat isfying the cond ition

(3 . 9) (k j , ht ) 0 , 1 1, .. .  , r
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we have

(3. 10) hi K Th li p , � IIKTht ii~ , -

Moreover , t = ~~ satisfies ( 3 . 9 )  ~~~~ KTh has exactly n - r distinct

zeros in (0 , l) at t~ € A n r  - Hence

(3.11 ) sgn KTh = ( _ l ) rh -11

The proof of this theorem is similar to the proofs of Theorems 2. 1

and 3.1. We omit the details .

We are now ready to compute n-widths. Let us first define

x~ = [k 1, . .  ~~~~~~~~~~~~ -

and

Ll 
= {f : f €  C[0 , l ], f(11) = 0 , I l , 2 , . . . , n) -

Theorem 3 . 5 .

( 00
, n < r

d~ (~ç ~ ;L1[0 , l ] )  = T
I I i K h ii n > r

1) ~~~
‘ —

and for n > r , X’ is an optimal subspace for the n-width of ~( -______  — n r ,p

Proof. We first prove the lower bound. Let Xn be any n-dimensional

subspace of L1[ 0 , 1] such that 
~~~~~~~ 

< 00 Then 0r ~ and

by the Hobby-Rice Theorem there exists a t E A k, 0 < k  < n , such that the

norm one linear functional F(y) ~ (y, h t ) annihilates - Thus we conclude

that
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~~
(
~
‘ ;X , sup i ( f , h ) Ir , p n t

r , p

and keeping in mind that 0r 
C X

n this simplifie s to

~
( ; X ) >  (IK

Th hIr , p n t p

T
> K h
—

The arbitrariness of X Implies that the desired lower bound is valid.
TI

The reverse inequality require s

Lemma 3 .4 .

11 ‘~‘•1K ~ > 0 .
1, . . .  , r , c~1, - - ‘~~n — r

The proof of this lemma is similar to that of Lemma 2. 3 (see [5], [6], and

[8] for similar results). Therefore we may define an interpolation operator

T: C[0, 1] -~ X 1 by the conditions

(Tf)( 11) = f(~1. ) , 1 1, . .  - , n -

Then as in Theorem 3 .2 , if f k + Kh , k € 0r ’ hI h hi~ ~ 1, we have

K(hhl ,~~~~, ,

1 . . , r ,~,1,.. ‘~~n-r ’’~f( x) - (Tf)( x) = f h(y ) dy
0 K~~ l , _fl

1, . .  . , r ,~ 1,. 
~~‘~~n —r

and
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I-
p ’ p ’

/ 1K~~ l ~1n~ ’~ \ I

sup Hf - Tf il
~ � 

I ~l, - . . , r ,~~1,. . - ‘~~n- r ’~~ d
x) dY)f e ’ (  0 0 Tir ,p  K ~ ~Ti n

~~

p ’ p ’

/ 1 1 ( 1  , r ,~~1, . - - ‘~~n -r ’~~)

K /~~1 ‘~~n’ x \ 

h (x)dx dy= I f ( ~f “

~l , . . - , r ,~~1, . - - ‘~~n-r 
i) 

~
0 0 

K(~~ ~Ti n ) ~
Since (k , h ) = 0 , i = 1, .. . , r , and (K ( - , ~ ) , h = 0 , 1 1, 2 , . . - , n - r ,I ~ Ti

the above simplifies to

sup h f  - Tf hi 1 .
~~ II K Th 11 -

f € ~(r , p

Thus

d (‘( ;L1[ 0 , 1]) = sup h f  - Tf II I1 K Th iin r , p 
f~~( 1 r~ P

r , p

Finally , we have

3.4. Gel ’fand n-width , l �p ~~ . oo , q = 1 .

Again p = 1 was done in [6] while p = 00 is included in Subsection 3. 2.

We assume here that 1 < p < ~~~

Theorem 3.6 .

00 n < r
d°~~ ;L 1[0 , l ] )  = 

[
Th Ii , n �rr , p tj IK

and for n > r , L1 is an optimal subspace for the n-width ofn
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Actu al ly  (see the proof of Theorem 
~
. ~) L1 is a “ near ly ” opt imal

subs pacr .

Proof. The upper bound

sup h f  II < sup i lf  - Tf ii < II K
T
h ii

1 1 f€ ’( 1
f€ L  fly r,p

n ‘ r,p

follow s f rom the proof of Theorem 3. 5.

For the lower bound , we let Ln be any subspace of finite codimen-

slon n of L1[ 0 , 1] such that  sup Hf ii < ~~~ Hence
f € L  ~~ 

1
TI r , p

L fi 
~ r {0) and L = {f f L1[ 0 , 1], (u~~f) 0 , i 1, ... , n)

for some linearly independent functions u1, . .. , u~ € L
00

[ 0 , 1]. Let

N (x ,y  be a s defined in ( 3 . 8 )  and set v~ = NT
u~. -The lower bound

argument  given in Subsection 3.1 may be modified to prove that there

is an s = (s 1, . . - , sk
) , 0 ~ k < n , such that (k i, h 5

) = 0, i = 1, . . .  , r and

IJK
T
h
5 ~~ = 

ar+l~
.
’
~

. a 
II K Th 5 

- 

i~~+l 
a1v1 hi p ,

To accomplish this , let f (x) be as in Subsectio n 3 .1  for
Z rt+l

z € sn 
= {z (z 1, . . - , z 4 1) L z~ = 1) . For 1<  p ’ < 00 let

a ( z ) , . . . , a ( z )  be the unique coefficients in the best L1
~ approxima-

tion to KTI fro m the subspace spanned by V r+l~~ 
. . ,v 0 - We define

an odd , continuous mapping of S~ into R~ by z - ((k1, f ) , . - - (k , f ) ,

ar+i
(z) , . . - , a~ (z ) )  and again apply the Borsuk Antipodality Theorem and
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obtain a 7 € S’~ fo r which (k , f ) = 0 , 1 = 1 , . . - , r , a1(z 0 ) - 0 ,0 0
I r 1, . . .  , n. Then h ±1 serves our purpose.

0 TSince the best L~ approximation to K h by the subspace

sp anned by Vr4~l~ - - ‘~‘n is zero , we necessarily have the orthogonality

relations (g , v )  0 , 1 = r + 1, . . .  , n where g sgn KTh J K Th 1 p _ l  
-

Let w g/ 1Jg hh ~ . Then w L~ [ 0 , 1] with h h w II 1 and f
0 

Nw € L fi

(see the discussion in Subsection 3 . 2 ) .  Hence

sup h f  II .~~ Hf II > (h , f
f € L f l V  1 0 1  s O

n r , p

and because (k i, h 5
) = 0 , i = l , . . . , r , we have

= (K Th , w) = iI K Th
5 I I ,  > hh I(Th hi

~~
I -

Letting p ’ — .1 completes the proof.

As was indic ated , the prototype for the class of sets considered in this
J — i  1 r — l  -section is k~(x) = x , J = 1,. . - , r and K(x , ~‘) = ( r -l)  ! ( x_y )

+ since , in

this case , ~( is simply a ball of the Sobolev space. We specialize below

the results of this section for this specific class of functions.

Definition. A perfect spli ne on [0, 1] of degree r wi th m kno ts

0 = 
~~~ 

<
~~~~ 

< <
~~~ ~~~~~~~~~~ 

= 1, is any function P(x) of the form

r-l m
P(x) = 

~~ 
ai x

~ + c ~ ( - l )~ f ( x-y)~~~dy
1=0 J= 0

where , as usual , X~ = ~r 
if x > 0, and zero oth erwise.
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Let p denote the class of perfect splines of degree r with at most m

k nots with l P 0
~( x ) I  1 a.e.  on [0 , 1], and let 

~ m {P: P €

P~
1
~(0) = pW ( 1) = 0, 1 0, 1, - . - , r -l } - Theorems 3.1 and 3 .4  reduce to the

followi ng

Corollary 3. 1. 1 ~ < P~ E ~ be any perfect spline which

attains mm II ~hI . Then P has m distinct knots in (0 , 1), and
PEp p m,p —  —

exactly m i~r ze ros In (0 , 1), each one a sign change.

Corollary 3. 2. Let 1 < p < oo and m > r, and let 
~ m, p E 

~ m be any perfect

spli ne which attains m m hh Q ii - Then Q has m distinct knots in
Q€Q 

p m ,p

(0 , 1) and exactly m - r ~~ros in (0 , 1), each one a sign change.

Let & = {f: f
( r _ l) abs. cont. , I I f (r) i h < 1) - Then from Theorem s ~ . 2r , p P

and 3. 3 we have

Corollary 3. 3. For 1 < q < 0 0

( , n < r
d n (& r x ~

; L~ [0 , 1]) d TI(& r 0 0 ; L~ {O , 1]) = 

l i p  ii , n > rn -r , q  q —

arid for n > r

i) X0 
= [l , x, .. ~

r_ l  
~~~~~~~~~~ - ( X _ ~~f l r

)
r

+~~~], where the 
i~ j l

are the knots of P , i s an optimal subspace for the n-width d -n -r ,q  n

ii) L 0 
= {f: I c  C[0, 1], 1(T

1
) = 0, 1 = 1, . . . ,  n} ,  where th e {T

1
)~~~~

1 
are the

sign changes of 
~n..r q’ is an optimal subspace for the n -width d TI 

-

From Theorems 3. 5 and 3. 6, we have
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Corollary 3.4. For 1 <  p < 0 0

d (8 ; L1[0 , 1]) d~ (8 ; L 1{O , 1]) = [ n < r

TI ~P , P  
~~~~~~~~ n~~~r

where ~~
- + ~~

- = 1, and for n > r
p p ’ —

1 r — l  r— l  r— 1 n — rI) X = [1, x , - - - , x , (x - , . . - , (x - 
~n -r~+ ]~ 

where the

a re the sign changes of 
~ n , ,  is an optimal subspace for the n-width  d

ii) L’ = {f: f € C[0 , lJ , f( Ti
1

) =  0, 1 = 1, - . - , n) , where ~~ 
}rI are the

k nots of Q~ ~~~

, , is an opt imal subspace for the n -width d n 
-

Note that by setting q = 1 in Corollary 3. 3 and p = 00 in Corollary 3. 4,

it follows that  l i p  Ii = II Q II and the knot s of P may  be taken  as then — r , 1 1 n , 1 1 n — r — 1
sig n changes of on , 1 and vice versa.
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§4 .  Mi xed (~ P~~~~) Nor ms

Let

1 1  2 1

q If (J ~~~~~~~~~~~~~~~
0 0

where 1 < p < ~~~~, 1 < q < -‘h . If q ~~
‘ and/or p - ‘~~, then the usual

defini tions apply .  We use , as befo re , the pairing (u , v) f u (x )v (y ) dy
0

for u e L~ v € L~ -
~~ + 1.‘ p p

We study

(4.1)  E~~ q (K) = inf{ 1K 
~ 

ui~~
vi I p q  

: u1, . . . , u € L~ [ O , 1],

v1, . . . , v €  L~ [ O , l}

where

(u 1 ® v~)(x ,Y )  u
~

(x )v
~(Y )

and shall make use of the results of Section 3 with r = 0. For convenience ,

‘O ,p  shall be denoted by 
~( .  Thus

{Kh : ii h hi ~~~~l) -

Also , let

= {K Th : hI h ih~~~lJ -

Theorem 4.1.

max{dn (kq t :L~[ 0 , 1]), d~~k~~, ~L~[ 0 , 1] )}� E~~ q (K )
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Before proving this theorem let us observe that the above n-width s ,

when n = 0 , are given by

d 0 (~’q . ;L~ [ 0 , 1]) = ~
0

(~~~ ;L~ [ 0 , 1])

sup liKh h h
hlh bi �1

i l K iip,q
The righ t -hand  side Is the operator norm of K as an Integral operator

acting on L~~[ 0 , 1] into L~ [ 0 , 1] . Now , by H~3lder ’ s inequality , for

h €  L~~[O ,i], g~ L~~[0 ,1]

1 1
(4 . 2  h ( K h , g) I  = if f g(x)K(x,y)h(y)dxdy h

0 0

-~

<f h gx (f IK(x,y) ~~~~~~~ lbh
0 0

~ h K h p q hh ~ hl p i hi h hh q s -

Thus since

sup I( }Q i ,g ) i h l K hi
ilh il q i� l 

p ,q

hh~ hh~..~l

we have

hh K ih < l K h = E ° (K)p , q —  p , q p , q

which proves the theorem for n 0.
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Now , for general n we prove the theorem by returning to (4. 2)

to see that for u1, - . - . u~ € L~ [ 0 , 1], v1, . . . , v e ~~ 0 ,1]

h ((K - u~ ~ v~)h , g) I ~ 1K - u1 ® v1 I h lh II , j Ig II
i - l i= 1 p ,q q

Thus we have

- 

~ 
u1(v1, h)  hi~ � 1K - u1 ~ v1 ‘p q  hIh

and

- ~ v ( u . ,g) iI 
~~~ 

iK - u ® v h il~~II
i=l q 

~~~~ 
p,q p

The first inequality implies that

dn (k~q t ;LP[O , 11) ~~E~~ q (K)

while the second gives

0 , 1]) ~ E~~ q (K)

Therefore Theorem 4.1 is proven for all n.

It is hardly surprising that this inequality is not always sharp . The

basic compari son (4. 2) betwe en Il K (I and iK h relies on twop , q p , q
applications of H~ lder ’ s inequality which certainly eliminates , for all

but special choices of p ,q and kernels K(x ,y ) , equality from occurring .

A particularly striking example of this occurrence is the case p q 2.

We have already mention ed that E. Schmidt showed th at

E~~~2(K) = 

~n~ l ~~~~~~~~~~~~
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However , the lower bound from Theorem 4. 1 is merely

~n+l = d ~~2
;L 2[0 , l ])  = d (~~~;L 2[ O , l ] )  -

Nevertheless , we have

Theorem 4. 2. Let K be a nondegenerate totally positive kernel. Then

for any n > 0 , l < p < 0 0

~~ (~(
00

;L P [ 0 , 1]) = d ( ~(
T

, ;Lu [ 0 , 1]) E~~~1
(K ) -

Moreover ,

r TI ‘K t’

~ 
) 

~
.p , z

where

(X , T 1 , .  - -
K! TI

y ,~ ,. . .,y )

K 
T1,~~ . . , T

.‘~~n

~1i~ ~~~~~
. . - 

~~~~~~ 

i-
1

~~~. . . , 
i- are obtained from the function

given in Theorem 3 .2  where r = 0 ~~~~ ç is re~ 1aced by p . Furthermore,

and fv ~ (y))~’, as defined in Theorem 2. 2 with respect to

the above and {T
1
)~~~, are an optimal choice in the solution of ( 4 . 1 ) .

Let us observe that for any kernel il K 110 0 1  h K i 0 0 1. Thus when

p 00
, the above theorem is proved in [5] . Note , however , that for

p < 00 , I lK 
~~~ 

is not always equal to i K i 1 .
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Proof. At this point , we have accumulated sufficient information on

widths so as to facilitate the proof of this result . We observe that for

nE (K) < Ep , l — p , l

1 1  1

(f (f IE(x ,y ) i d y )~ dx)~
0 0

1 1  1

= (J ( I f  E(X ,y ) h ~ (y)~ y j ) P~~ ) P
0 0

1
Furthermore , since 0 = g 

~ 
( T

i
) = f K( T 1,y) h (y)dy , I = 1, 2 , . .. , n ,

0
we have

1 1  1

= (f (If ~~~~~~~~~~~~
0 0

iIg 0~ ~
We now invoke Theorem 3. 2 for r = 0 , and q replaced by p to

conclude that d~
(
~ 00

;L
~ [ O , l ] )  = ii~~~0~~ iI~,. Hence equality is achieved

in Theorem 4.1 and , in addition , d~ (k~~5 :L’[ 0 , 1]) .
~~~ 

hIg~ 0~ hI~,•
However , from Theorem 3. 5 (with r = 0 , p replaced by p ’ , and K

by KT ) , it follows that

d~ (~(
T , ;Ll[ O , l ) )  ihKh~ hJ~ = JJg~~ 0~~~JJ -

This last equality follows from the definition of Il g~~0~~ hi~ .
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K(x , y))

satisfy certain restrictions.


